• Professional Development
  • Medicine & Nursing
  • Arts & Crafts
  • Health & Wellbeing
  • Personal Development

10 Weld courses

ISO 3834 Fusion Welding Quality Lead Auditor Course

By Cognicert Limited

ISO 3834:2021 (Quality requirements for fusion welding of metallic materials) Lead Auditor” course provides comprehensive training for participants to be able to understand and audit each and every ISO 3834:2021 guidelines in ensuring orgnaisation compliance and continual improvement in the welding industry

ISO 3834 Fusion Welding Quality Lead Auditor Course
Delivered in-person, on-requestDelivered In-Person in Internationally
£1200

Metal Workshop - Mechanics

4.9(52)

By Pottery Box

Always wanted to know how to do those small jobs on a car? or perhaps you want to delve a little deeper under the bonnet or learn how to weld the under carriage ? Available for all ages and abilities £40 per hour one to one.

Metal Workshop - Mechanics
Delivered In-Person
Dates arranged on request
£40

Mig welding day course for beginners

By The Forge Ironworks

Mig Welding for beginners one day course.

Mig welding day course for beginners
Delivered In-Person
Dates arranged on request
£185

Drill String Design & Drilling Optimization

By Asia Edge

ABOUT THIS TRAINING COURSE The drill string is the simplest piece of equipment in use on a drilling rig and at the same time, the most critical piece. We use the qualifier 'basic' because although 99% of the drill string comprises plain tubes that are just screwed together, the lowest section, just above the bit, can go to extreme loading and is fitted with highly sophisticated electronics packages providing both positional and lithological data as well as a steering system to drive and orient the bit. The principle tasks of the drill string are also deceptively simple. These are to: 1. Convey each drill bit to the bottom of the hole and then to retrieve it when worn, 2. Act as a conduit to convey drilling fluid at high pressure down to the bit and 3. Transmit torque from surface to bit, occasionally in concert with a hydraulic motor to drive this bit. This 3 full-day course will cover in detail what it takes to decide on minimum drill string specifications, which are able to support the loads to which it will be subjected. In addition to the need to use a drill string with minimum strength requirements, we also need to ensure that we can prevent drill string failure. If the failure consists of a small split or leak of any kind, then the time involved may be little more than that required for a roundtrip to change the bit. If the string parts, then the recovery is likely to take a considerable amount of time. In a worst case scenario, the fish in the hole may prove impossible to retrieve, requiring a sidetrack. A less than optimal design of the string will reduce the efficiency of the operation and almost always leads to premature bit wear. This is particularly true when we are unable to measure and control the dynamics of the drill string as a whole and the bottomhole assembly in particular. Axial vibrations, torsional vibrations and lateral vibrations may take place in various degrees of severity. The behaviour of the drill string while operating under torsional vibrations is thought to be of great importance and may result in torsional buckling. This course will also cover the drilling optimization limiters, how to identify them and how to remove them. This is done by understanding the drill string dynamics - by operating under the most favourable conditions and by measuring the dynamics in the vicinity of the bit (or at the bit) in order to make timely adjustments. Training Objectives The course homes in what office staff needs to know and plan for and what field staff needs to know and implement. By the end of this course, participants will be familiar with: * Critical dimensions of common drill pipe and weld-on tool joints and its relation to yield for calculation of tensile, torsional and burst resistance. * Make-up torque of connections that relate to the tool joint dimensions and the torsional strength of that connection. * Use of design factors and safety factors on tensile and torsional strength in relation to new and worn state. Conditions which could lead to drill pipe collapse. * Situations where limitations on sinusoidal (snake) and helical buckling will apply and the influence of radial clearance and deviation. * Failure of drill pipe (fatigue) and the circumstances under which these would occur (rotation across doglegs, pipe in compression etc). * Mechanism under which hardbanding would induce casing wear and the methods applied to measure and prevent any significant wear. * Drill pipe inspection methods we apply to identify early flaws/cracks/corrosion, to measure dimensions, to inspect tool joints etc. * Common BHA components, including heavy wall drill pipe, their external/internal dimensions, connections (API, proprietary) and appearance (such as spiral). * Significance of thread compounds to ensure the correct make-up torque is applied. * Significance of drill string/BHA 'neutral point' in the context of drill string component failure. * Basic design principles for a BHA make-up in a vertical, low/medium deviated and highly deviated well in terms of weight transfer and drag/torque. * Stabilization principles for a pendulum (vertical), a stabilized (vertical or tangent), a build and a drop-off assembly. * BHA design and stabilization in relation to mitigation/elimination of vibration and to the elimination of tension, torsion or fatigue failure. * Matching bit aggressiveness, gauge length, BHA stabilization, steerability and Mechanical Specific Energy (MSE) to mitigate the severity of any vibration. * Bit efficiency and reduction of wear by understanding mechanical and hydraulic limiters. How to perform a passive or active drill-off test. * Importance of being conversant with API 7G RP and/or equivalent data books, to look up/check the recommended tensile/torque and other parameters for the drill string in use. Target Audience This course is intended for staff directly or indirectly involved in the delivery of challenging wells such as junior to senior well engineers, both in office-based planning and operations and field-based operator/contractor supervisory staff such as company men and toolpushers. Trainer Your expert course leader has over 45 years of experience in the Oil & Gas industry. During that time, he has worked exclusively in the well engineering domain. After being employed in 1974 by Shell, one of the major oil & gas producing operators, he worked as an apprentice on drilling rigs in the Netherlands. After a year, he was sent for his first international assignment to the Sultanate of Oman where he climbed up the career ladder from Assistant Driller, to Driller, to wellsite Petroleum Engineer and eventually on-site Drilling Supervisor, actively engaged in the drilling of development and exploration wells in almost every corner of this vast desert area. At that time, drilling techniques were fairly basic and safety was just a buzz word, but such a situation propels learning and the fruits of 'doing-the-basics' are still reaped today when standing in front of a class. After some seven years in the Middle East, a series of other international assignments followed in places like the United Kingdom, Indonesia, Turkey, Denmark, China, Malaysia, and Russia. Apart from on-site drilling supervisory jobs on various types of drilling rigs (such as helicopter rigs) and working environments (such as jungle and artic), he was also assigned to research, to projects and to the company's learning centre. In research, he was responsible for promoting directional drilling and surveying and advised on the first horizontal wells being drilled, in projects, he was responsible for a high pressure drilling campaign in Nigeria while in the learning centre, he looked after the development of new engineers joining the company after graduating from university. He was also involved in international well control certification and served as chairman for a period of three years. In the last years of his active career, he worked again in China as a staff development manager, a position he nurtured because he was able to pass on his knowledge to a vast number of new employees once again. After retiring in 2015, he has delivered well engineering related courses in Australia, Indonesia, Brunei, Malaysia, China, South Korea, Thailand, India, Dubai, Qatar, Kuwait, The Netherlands, and the United States. The training he provides includes well control to obtain certification in drilling and well intervention, extended reach drilling, high pressure-high temperature drilling, stuck pipe prevention and a number of other ad-hoc courses. He thoroughly enjoys training and is keen to continue taking classes as an instructor for some time to come. POST TRAINING COACHING SUPPORT (OPTIONAL) To further optimise your learning experience from our courses, we also offer individualized 'One to One' coaching support for 2 hours post training. We can help improve your competence in your chosen area of interest, based on your learning needs and available hours. This is a great opportunity to improve your capability and confidence in a particular area of expertise. It will be delivered over a secure video conference call by one of our senior trainers. They will work with you to create a tailor-made coaching program that will help you achieve your goals faster. Request for further information post training support and fees applicable Accreditions And Affliations

Drill String Design & Drilling Optimization
Delivered in-person, on-request, onlineDelivered Online & In-Person in Internationally
£1461 to £1699

This is a one-day intensive welding course where you can learn and practice all 3 welding processes with a variety of metals, or focus on one of your choice.

Welding Day
Delivered In-Person
Dates arranged on request
£245

Piping Stress Engineering

By Asia Edge

ABOUT THIS VIRTUAL INSTRUCTOR LED TRAINING (VILT) The 5 half-day Piping Stress Engineering Virtual Instructor Led Training (VILT) course will systematically expose participants to: 1. The theory and practice of piping stress engineering, with special reference to ASME B 31.1 and ASME B 31.3 Standards. 2. The basic principles and theories of stress and strain and piping stress engineering, through a series of lessons, case study presentations, in-class examples, multiple-choice questions (MCQs) and mandatory exercises. 3. Principal stresses and shear stresses which form the backbone of stress analysis of a material. Expressions for these quantities will be derived using vector algebra from fundamentals. 4. Thermal stress-range, sustained and occasional stresses, code stress equations, allowable stresses, how to increase flexibility of a piping system, cold spring. 5. The historical development of computational techniques from hand calculations in the 1950s to the present-day software. Training Objectives On completion of this VILT course, participants will be able to: * Identify potential loads the piping systems and categorise the loads to primary and secondary. * Determine stresses that develop in a pipe due to various types of loads and how to derive stress-load relationships, starting from scratch. * Treat the primary and secondary stresses in piping system in line with the intent of ASME Standards B 31.1 and B 31.3 and understand how the two codes deal with flexibility of piping systems, concepts of self-springing and relaxation/shake down, displacement stress range and fatigue, what is meant by code compliance. * Understand the principles of flexibility analysis, piping elements and their individual effects, flexibility factor, flexibility characteristic, bending of a curved beam and importance of virtual length of an elbow in the flexibility of a piping system. Learn stress intensification factors of bends, branch connections and flanges. * Understand how the stresses in the material should be controlled for the safety of the piping system, the user and the environment. * Examine how codes give guidance to determine allowable stresses, stress range reduction due to cyclic loading, and effects sustained loads have on fatigue life of piping. * Confidently handle terminal forces and moments on equipment. Understand the supplementary engineering standards required to establish acceptance of the equipment terminal loads and what can be done when there are no engineering standard governing equipment terminal loads is available and learn the techniques of local stress analysis. * Get a thorough understanding of the concepts and the rules established by the ASME B 31.1 and ASME B 31.3 Standards. * Perform flange load analysis calculations based on Kellogg's Equivalent Pressure method & Nuclear Code method. Perform the same using a piping stress analysis software and check for flange stresses and leakage. * Confidently undertake formal training of piping stress analysis using any commercial software, with a clear understanding of what happens within the software rather than a 'blind' software training and start the journey of becoming a specialist piping stress engineer.   Target Audience The VILT course is intended for: * Recent mechanical engineering graduates who desire to get into the specialist discipline of Piping Stress Engineering. * Junior mechanical, chemical, structural and project engineers in the industry who wish to understand the basics of Piping Stress Engineering. * Engineers with some process plant experience who desire to progress into the much sought-after specialist disciplines of Piping Stress Engineering. * Mechanical, process and structural engineers with some process plant experience who desire to upskill themselves with the knowledge in piping stress engineering and to become a Piping Stress Engineer. * Any piping engineer with some pipe stressing experience in the industry who wish to understand the theory and practice of Piping Stress Engineering at a greater depth. A comprehensive set of course notes, practice exercises and multiple-choice questions (MCQs) are included. Participants will be given time to raise questions and participants will be assessed and graded based on responses to MCQs and mandatory exercises. A certificate will be issued to each participant and it will carry one of the three performance levels: Commendable, Merit or Satisfactory, depending on how the participant has performed in MCQs and mandatory exercises. Training Methods The VILT course will be delivered online in 5 half-day sessions comprising 4 hours per day, with 2 breaks of 10 minutes per day. Course Duration: 5 half-day sessions, 4 hours per session (20 hours in total). Trainer Your expert course leader is a fully qualified Chartered Professional Engineer with over 40 years of professional experience in Oil & Gas (onshore and offshore), Petrochemical and Mining industries in engineering, engineering/design management and quality technical management related to plant design and construction. At present, he is assisting a few Perth based oil & gas and mining companies in detail engineering, piping stress analysis, feasibility study and business development work related to plant design. He is a pioneer in piping stress engineering in Western Australia. His recent major accomplishments include the following roles and challenges: 1. Quality Technical Support Manager of USD 54 billion (Gorgon LNG Project). This encompassed management of quality technical services connected with Welding, Welding Related Metallurgy, Non-Destructive Examination, Insulation /Refractory /Coating, AS2885 Pipelines Regulatory Compliance and Pressure Vessel Registration. 2. Regional Piping Practice Lead and Lead Piping Engineer of Hatch Associates. In this role, he was responsible for providing discipline leadership to several mining projects for BHP Billiton (Ravensthorpe), ALCOA-Australia (Alumina), Maáden Saudi Arabia (Alumina), QSLIC China (Magnesium), COOEC China (O&G Gorgon). He was actively involved in the development of piping engineering practice in WA, including training and professional development of graduate, junior and senior engineers. This also includes the formation of the Piping Engineering Specialist Group. 3. Lead Piping/Pipe Stress Engineer on ConocoPhillips' (COP) Bayu Undan Gas Recycle, Condensate production and processing platform. He was able to develop several novel design methodologies for the project and provided training to engineers on how to implement them. These methodologies were commended by COP and the underwriters of the project Lloyds Register of Shipping, UK. 4. Creator of Piping Engineering Professional Course aimed at global engineering community. Professional Affiliations: * Fellow, Institution of Mechanical Engineers, UK (IMechE) * Fellow, Institution of Engineers, Australia (EA), National Register of Engineers (NER) * Member American Society of Mechanical Engineers, USA (ASME) * Honorary Life Member, Institution of Engineers, Sri Lanka (IESL)   POST TRAINING COACHING SUPPORT (OPTIONAL) To further optimise your learning experience from our courses, we also offer individualized 'One to One' coaching support for 2 hours post training. We can help improve your competence in your chosen area of interest, based on your learning needs and available hours. This is a great opportunity to improve your capability and confidence in a particular area of expertise. It will be delivered over a secure video conference call by one of our senior trainers. They will work with you to create a tailor-made coaching program that will help you achieve your goals faster. Request for further information about post training coaching support and fees applicable for this. Accreditions And Affliations

Piping Stress Engineering
Delivered in-person, on-request, onlineDelivered Online & In-Person in Internationally
£1430 to £2699

Level 2 NVQ Diploma in Construction Plant or Machinery Maintenance

By Dynamic Training and Assessments Ltd

Level 2 NVQ Diploma in Construction Plant or Machinery Maintenance

Level 2 NVQ Diploma in Construction Plant or Machinery Maintenance
Delivered in-person, on-requestDelivered In-Person in Nottinghamshire
£695

Metalwork Craft Weekend

By Bradwell Blacksmiths - The Iron Lady

This two-day course will introduce you to different methods and techniques used within the metal industry, and you will come away with a finished product at the end (Example: ornamental garden flower, weather vane or a wall mounted coat rack).

Metalwork Craft Weekend
Delivered In-Person
Dates arranged on request
£395

Metal Workshop - Taster Sessions

4.9(52)

By Pottery Box

(one to one) including all basic materials Have a go at welding and grinding and take your test piece home that day ! £35 per person

Metal Workshop - Taster Sessions
Delivered In-Person
Dates arranged on request
£35

Metal Workshop - Full Sculpture Sessions

4.9(52)

By Pottery Box

These sessions include welding , grinding , torch cutting and design and construction of metal sculpture work. From an hour to make a bolt man to a family group session of 3 hours to make a large sculpture the possibilities are endless.  £40 an hour then £15 any additional person

Metal Workshop - Full Sculpture Sessions
Delivered In-Person
Dates arranged on request
£15 to £40

Educators matching "Weld"

Show all 40